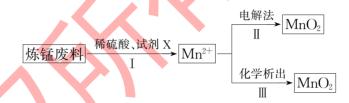
2022 年高考密破考情卷(一)

化学

本试卷共8页,满分100分,考试用时75分钟。 注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写 在本试卷上无效。
 - 3. 考试结束后,将本试题卷和答题卡一并交回。

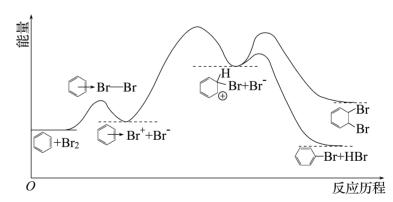
可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 S 32 Cl 35.5 Ba 137


- 一、选择题:本题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. 永春老醋又名福建红曲醋,历史悠久,素有"中国红曲醋看福建,福建红曲醋看 永春"之说。下列说法错误的是
- A. 用食醋可以除去水壶中的水垢
- B. 陈年的酒很香是因为乙醇和乙醇被氧化生成的乙酸,发生酯化反应生成了 乙酸乙酯
- C. 乙酸是一元羧酸,能使紫色石蕊试液变红
- D. 除去乙酸乙酯中的少量乙酸:用饱和氢氧化钠溶液洗涤,分液、干燥、蒸馏
- 2. 莽草酸酯是一种莽草的提取物,临床中可用于很多病症的治疗。下列有关莽草酸甲酯的说法正确的是 ()
- A. 属于芳香族化合物
- B. 分子式为 C₇ H₁₀ O₅

НОНООН

- C. 能发生氧化、消去和取代反应
- D. 1 mol 该有机物最多消耗 2 mol H₂
- 3. N_A 表示阿伏加德罗常数的值,下列说法正确的是
- A. 1 mol D₂O和 1 mol T₂O所含有的中子数相同

化学试题(一) 第1页(共8页)


- B. 相同物质的量的亚硫酸钠和焦亚硫酸钠($Na_2S_2O_5$)作还原剂失去电子数分别为 N_A 和 $2N_A$
- C. 1 mol FeS₂ 在沸腾炉中完全燃烧失去电子数为 15 mol
- D. 1 mol Cl₂ 与足量的铁完全反应转移电子数为 2N_A
- 4. 二氧化锰是化学实验中常用的催化剂,用炼锰废料(含+4 价的锰元素)为原料制备 MnO₂ 的流程如图所示:

下列说法不正确的是

A. 步骤 I 中, 试剂 X 必须具有还原性

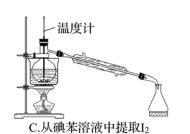
- B. 步骤 II 中用惰性材料电解,阳极反应式为 Mn²⁺ −2e⁻ +2H₂O ——MnO₂ ↓ +4H⁺
- C. 步骤Ⅲ加入 KMnO₄ 溶液析出 MnO₂,发生反应的氧化剂与还原剂物质的量的比是 3:2
- D. 适当升高温度能提高酸浸时锰元素浸出率
- 5. 苯与 Br₂ 的催化反应历程如图所示。下列说法正确的是 (

- A. ◯→Br—Br 是总反应的催化剂
- B. Br⁺转化为 Br 是总反应的决速步骤
- C. 苯与 Br₂ 的催化反应是放热反应
- D. 反应生成的有机产物中,取代产物所占比例更小 化学试题(一) 第2页(共8页)

* 塔

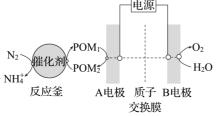
老 号

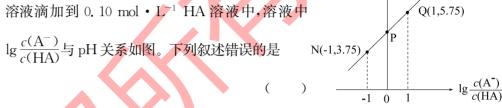
進 迅


姓名

₩·

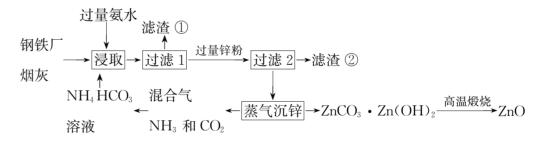
- 6. 现有几种盐混合物的水溶液,可能含有以下离子中的几种: K^+ 、 NH^+ 、 Mg^{2+} 、 Ba^{2+} 、 Cl-、CO2-、SO2-。现取三份各 100 mL 溶液进行如下实验:第一份加入AgNO.溶液 有沉淀产生;第二份加足量 NaOH 溶液加热后,收集到 0.08 mol 气体;第三份加足 量 BaCl。溶液后,得到干燥沉淀 12.54 g,经足量盐酸洗涤、干燥后,沉淀质量为 4.66 g。正确的是
- A. 该混合液中一定含有: NH⁺、SO²⁻,可能含 Mg²⁺、K⁺、Cl⁻
- B. 该混合液中一定含有: NH⁺、CO²⁻、SO²⁻、Cl⁻,可能含 K⁺
- C. 该混合液中一定含有: NH₄ 、CO₃ 、SO₄ , 可能含 Mg²⁺、K⁺、Cl
- D. 该混合液中一定含有: K^+ 、 NH_4^+ 、 CO_3^{2-} 、 SO_4^{2-} ,可能含 Cl^- ,且 $n(K^+) \ge$ 0.04 mol
- 7. 某学习小组从海带中提取碘单质并进行纯化。下列实验装置和操作能达到目 的的是





- 8. X、Y、Z、W 均为短周期元素且原子序数依次增大, X 为金属元素且最外层电子 数是次外层的 1/2, Z 是地壳中含量最高的元素, Y 与 W 同主族且 Y 的原子核 外电子数等于 X 和 Z 的最外层电子数之和。下列说法错误的是
 - A. X 在纯氧中燃烧只能生成一种氧化物
 - B. Y 和 Z 均存在既含极性键又含非极性键的氢化物
- C. W 的最高价氧化物的水化物与强碱反应只能生成 1 种酸式盐
- D. Y 与 W 能存在于同一离子化合物中
- 9. 某科研团队利用连续闭合的电化学-化学反应 循环实现氮还原的原理示意图如图所示,其 中 Fe-TiO₂ 作为氮还原的催化剂,则下列说 NH 法正确的是

化学试题(一) 第3页(共8页)


- A. 氢离子由 A 电极区经过质子交换膜移向 B 电极区
- B. 电解液中 POM。转化为 POM。的过程为还原反应
- C. B 电极的电势高于 A 电极
- D. 该电池生成 1.5 mol 氧气时可还原氮气 22.4 L
- 10. HA 是一元弱酸。室温下,将 0.10 mol·L⁻¹ NaOH 溶液滴加到 0.10 mol·L¹ HA 溶液中,溶液中

- A. HA 的电离平衡常数 $K_a = 10^{-4.75}$
- B. 水的电离程度:Q>P>N
- C. N 点溶液中: $c(Na^+) < c(A^-) < c(HA)$
- D. Q点溶液中:c(Na⁺)>10c(HA)

二、非选择题:本题共5小题,共60分。

11. $(13 \, \text{$\mathcal{G}$})$ 钢铁厂产生的烟灰主要成分为 $Z_{\text{nO}} \otimes \mathbb{G}_{\mathbb{G}} \otimes \mathbb{G}_{\mathbb{G}} \otimes \mathbb{G}_{\mathbb{G}}$ 以钢铁厂烟灰为原料生产纯净氧化锌的工艺流程如下:

已知:滤液 1 的主要成分是 $[Zn(NH_3)_4]^{2+}$ 、 $[Cu(NH_3)_4]^{2+}$ 配离子和 CO_2^{2-} 离子。 回答下列问题:

- (1)工业上不选用高纯 ZnCO₃ · Zn(OH)₂ 制备氧化锌,而选用烟灰来进行制 备,目的为 (答1条)。
- (2)滤渣②的成分有
- (3)写出[Cu(NH₃)₄]²⁺配离子与过量锌粉反应的离子方程式
- (4)实验室中高温煅烧固体药品时应使用的仪器名称为

化学试题(一) 第4页(共8页)

(5)写出过滤 2 得到的滤液在"蒸气	沉锌"工序中发生反应	的化学反应方程式
(6)将滤渣①用 H ₂ SO ₄ 溶液处理后	 得到溶液和	。 固体(均填化学
式)。		
12. (14 分)ClO ₂ 作为消毒剂在消毒过程	望中对人体无毒无害,	具有广泛的应用前
景。某小组组装了如图所示的装置	制备 ClO ₂ 气体,反应	原理为饱和草酸溶
液与 KClO₃ 粉末在 60 ℃时反应制	得 ClO ₂ ,同时生成另一	一种酸式盐,温度过
高或过低都会影响制气效率。		
【查阅资料】ClO ₂ 是一 草醇	逡 饱	N OHEN O
种黄绿色有刺激性气味	容液	NaOH和H ₂ O ₂ 混合溶液
的气体,熔点—59 ℃, 大 KC	IO_3	
沸点 11.0 ℃。与碱反	NaOH	
应和氯气相似。	冰水 B C	冷水浴 NaOH溶液 E F
(1)写出 A 装置中制	ВС	L I
备 ClO ₂ 的化学方程式		
(2)为了尽可能减少副反应,A装置	中还缺少一种仪器,该	亥仪器的名称 是
。B装置的作用		
(3)C装置吸收尾气后,溶液中含有	NaOH , NaClO ₂ , NaC	ClO ₃ 等溶质,小组成
员认为 C 中还可能有碳酸钠,试分析	沂可能的原因	
(4)A用水浴加热的优点是		ClO ₂ 和 Cl ₂ 均能将
电镀废水中的剧毒 CN ⁻ 氧化为无毒	章物质,自身被还原为	CI 。相同物质的量
的 ClO ₂ 和 Cl ₂ ,氧化能力之比为)
(5)如果把 C 装置改为后面的 EF \$	支置,ClO2 气体与装置	E中混合溶液反应
生成 NaClO2,生成 NaClO2 的离子	方程式为	0
13. (13 分)水煤气变换[CO(g)+H ₂ O(g) $CO_2(g) + H_2(g)$	g)]是重要的化工过
程,主要用于合成氨、制氢以及合成	气加工等工业领域中。	。回答下列问题:
(1)已知在 823 K 时①H ₂ (g)+CoC	$O(s) = Co(s) + H_2O(s)$	(g) $K_{\rm pl} = 70$
2CO(g)+CoO(s)=Co(s)+CO	$K_{n2} = 490, \text{M}$	上述两个反应的平衡

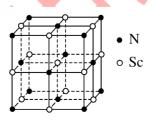
化学试题(一) 第5页(共8页)

常数判断还原 CoO(s)为 Co(s)的倾向是 CO _____H₂(填"大于"或"小于")。

- (2)823 K 时,在密闭容器中将等物质的量的 CO(g)和 $H_2O(g)$ 混合,采用适当的催化剂进行反应,已知 $\sqrt{7}$ =2.646,则平衡时体系中 H_2 的物质的量分数为_____(保留两位小数)。
- (3)水煤气变换反应的甲酸基机理如图1所示:

$$H_2O \Longrightarrow \begin{array}{c} H & OH \\ \downarrow & \downarrow \\ \hline \end{array}$$

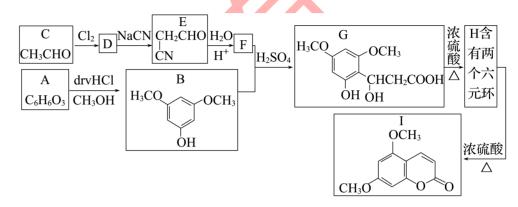
图 1 水煤气变换反应的甲酸基机理


下列说法正确的是。

- A. CO 在催化剂表面上与羟基结合成羧基形式
- B. 甲酸基转化为二氧化碳是还原反应
- C. 水在催化剂表面分解为氢原子和羟基是吸热反应
- D. 水煤气变换反应不是可逆反应
- (4)甲醇是重要的化工原料,又可作为燃料。利用合成气(主要成分为 CO、
- CO₂ 和 H₂)在催化剂的作用下合成甲醇,发生的主反应如下:
- $\bigcirc CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) \quad \Delta H_1 = -99 \text{ kJ} \cdot \text{mol}^{-1}$
- $\bigcirc CO_2(g) + 3H_2(g) \Longrightarrow CH_3OH(g) + H_2O(g) \quad \Delta H_2 = -58 \text{ kJ} \cdot \text{mol}^{-1}$
- $3CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g) \Delta H_3$
- 已知反应①中的相关的化学键键能数据如下:

化学键	Н—Н	С—О	C = O(CO)	Н—О	С—Н
$E/(kJ \cdot mol^{-1})$	436	343	а	465	413

化学试题(一) 第6页(共8页)


	则表中 a=kJ • mol	-1 0			
	(5)由合成气合成甲醇,当合成气的组成 $n(H_2)$		$\uparrow n(H_2)/n(0$	CO+CO ₂)=2.	.60
	$n(CO+CO_2)=2.60$ 时,体系中的 CO 平衡转化	率 00.9	5		
	(α)与压强的关系如图 2 所示。图 2 中的压强由	大 0.7	5	p_3	
	到小为。	0.6 0.5		p_2	→
	(6)直接甲醇燃料电池(Direct Methanol Fuel Ce	ell,	500 510 520	0 530 540 55 图2	50 7K
	DMFC)是直接利用甲醇水溶液作为燃料的一种	质子交换		1池,具有	
	体积小、重量轻、系统结构简单、能量密度高、燃料	斗来源丰	富、价格低	(廉、储存	
	携带方便、安全性高的特点。写出酸性条件下此	电池负机	及反应式:		
	•				
14.	.(10分)已知钪(Sc)是稀土元素之一,钪单质及其	化合物用]途广泛。	请回答下	
	列问题:				
	(1)与 Sc 同周期且其基态原子的未成对电子数与	i Sc 原子	相同的元	素有	
	种。				
	(2)元素呈气态时,从它的阳离子中将一个电子移	至无穷证	远处时所得	言做的功,	
	称为该元素的电离势,单位为电子伏特(eV)。Sc	的三种与	〔态离子 S	c^{+} , Sc^{2+} ,	
	Sc ³⁺ 的电离势分别为 6.54 eV、12.80 eV、24.76	eV,上述	三种气态	离子的电	
	离势依次增大的原因为	°	_ \		
	(3)我国科学家首次合成并用晶体结构表征了稀	土金属	末端 N	N = N	_
	氮宾配合物——钪末端氮宾配合物,该配合物的	分子结	勾如 N	Sc N	
	图所示。该配合物分子中碳原子的杂化方式为_				
	;与 Sc 原子形成配位键的 N 原子个数为	•	•	N	
	(4)氮化钪是一种具有高介电强度的压电半导体	材料,其	立方	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	晶胞结构如图所示。				

化学试题(一) 第7页(共8页)

①Sc 原子的配位数为	
②该化合物的化学式为	0

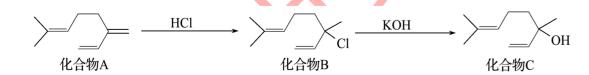
15. (10 分)白柠檬素(有机化合物 I)是一种重要的有机化工原料,可广泛用于医药、农药、香料及其他精细化工行业。可通过以下路线合成白柠檬素:

已知: $\mathbb{O}CH_3CN \xrightarrow{H_2O/H^+} CH_3COOH$

$$\begin{array}{c|c} OH & OH \\ \hline \\ 2 & + CH_3CHO \xrightarrow{H_2SO_4} & CHCH_3 \\ \hline OH & OH \\ \end{array}$$

回答下列	刊问题:
------	------

- (1)A的名称是____。
- (2)F 的结构简式为。
- (3)G→H 反应的化学方程式为。


(5)芳香族化合物 M 是 B 的同分异构体,属于三取代芳香族化合物且含有 1 个醇羟基,2 个酚羟基。其中,核磁共振氢谱共有 6 种吸收峰,且吸收峰面积比为 1:1:2:2:2:2:2 的同分异构体的结构简式为

2022 年高考密破考情卷(二)

化学

本试卷共8页,满分100分,考试用时75分钟。 注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
- 3. 考试结束后,将本试题卷和答题卡一并交回。 可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 S 32 Cl 35. 5 Ga 70 As 75 Sn 119
 - 一、选择题:本题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有一项是符合题目要求的。
 - 1. 世界文化遗产鼓浪屿,是一个环境"循环型"岛屿,岛内生活污水"零出岛",生活垃圾"零出岛",是"循环型"岛屿的一个重要特征。下列说法错误的是
 - A. 鼓浪屿上主要环境污染物质来自游客的生活垃圾
 - B. 汽水易拉罐应放入"可回收垃圾箱"
 - C. 为减少污染使用汽油或柴油作燃料的环岛旅游车
 - D. 用可溶性的铝盐和铁盐处理水中的悬浮物
 - 2. 一种重要的香料芳樟醇(化合物 C)由 β-月桂烯(化合物 A)用盐酸处理后再用碱处理得到,合成路线如下。下列叙述错误的是 ()

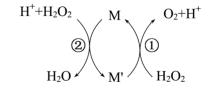
准考 证号

姓名

考 场

米 和

A. 化合物 A 与异丙苯() 互为同分异构体

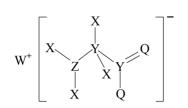

- B. 化合物 B 与 Cl 互为同系物
- C. 酸性高锰酸钾溶液无法鉴别化合物 A 和 C
- D. 该合成路线中发生加成反应、取代反应
- 3. 用 N_A 表示阿伏加德罗常数的值,下列说法正确的是

A. 12.0 g 熔融的 NaHSO4 中含有的阳离子数为 0.2NA

- B. 常温常压下,1.7g甲基(-14CH₃)中所含的中子数为 0.9N_A
- C.7.8g 苯中含有的碳碳双键数目为 $0.3N_A$
- D. 常温常压下, 92 g 的 NO_2 和 N_2O_4 混合气体含有的原子数为 $6N_A$
- 4. 用如图所示的装置进行实验,其中 a、b、c 中分别盛有试剂 1、2、3,能达到相应实验目的的是 ()

1	选项	试剂 1	试剂 2	试剂 3	实验目的	装置
	•	· 大 大 大 大 大 大 大	C	浓硫酸	制备干燥	
	A	浓硫酸	Cu	化弧酸	纯净的 SO ₂	
	В	浓盐酸	NaHCO ₃	Na ₂ SiO ₃ 溶液	比较 C、Si 的	a a
	Б	化益散	Nanco ₃	Na ₂ SiO ₃ 俗似	非金属性	
	С	70%硫酸	Na ₂ SO ₃	酸性 KMnO₄ 溶液	验证 SO ₂	
	C	70~09元首交	1Na ₂ SO ₃	政注 NVIIO4 俗似	具有还原性	b
	D	冰气业	ル 无 左	AlCl₃ 溶液	验证 Al(OH)3	
	D	浓氨水	生石灰	AICI ₃ 俗似	具有两性	

5. 已知分解 $1 \text{ mol } H_2O_2$ 放出热量 98 kJ。向 H_2O_2 溶液中滴加少量 $Fe_2(SO_4)_3$ 溶液, H_2O_2 分解机理如图所示:

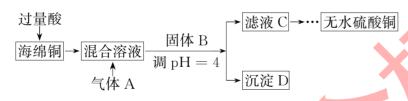

下列说法正确的是

- A. $v(H_2O_2) = v(H_2O) = v(O_2)$
- B. 反应②的方程式是 H₂O₂+2Fe²⁺+2H⁺===2H₂O+2Fe³⁺
- C. 在 H₂O₂ 分解过程中,溶液的 pH 逐渐降低

化学试题(二) 第2页(共8页)

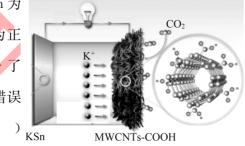
- D. Fe³⁺是催化剂能提高反应的平衡转化率
- 6. 一种食品添加剂的结构如图,经分析发现其构成含有
- X、Y、Z、Q、W 五种原子序数依次增大的短周期元素,
- Q 核外最外层电子数与 Y 核外电子总数相同, X 的原

子半径是元素周期表中最小的。下列结论正确的是

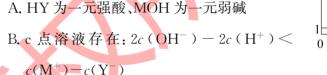

A. 原子半径大小顺序: W>Q>Z>Y B. 气态氢化物的稳定性: Y>Z>Q

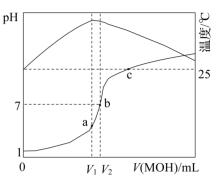
C. X、Z、Q 构成的物质可能含有离子键 D. 该物质既能与酸反应也能与碱反应

7. 下列化学用语对事实的表述正确的是


A. NaHCO₃ 电离: NaHCO₃ ===Na⁺+H⁺+CO₃²⁻

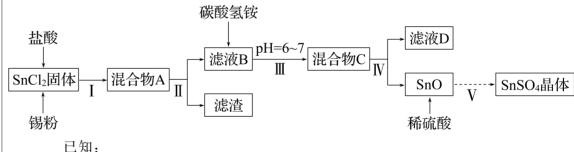
- B. 工业治炼氯化铝制铝单质: 2AlCl₃ (熔融) === 2Al+3Cl₂ ↑
- C. 用 Na₂CO₃ 溶液处理锅炉水垢中的 CaSO₄:CaSO₄(s)+CO₃⁻ ==-CaCO₃(s)+SO₄⁻
- $D. c(ClO^-)=1 \text{ mol} \cdot L^{-1}$ 的溶液中存在 Fe^{2+} 、 NH_4^+ 、 Na^+ 、 SO_4^{2-}
- 8. 工业上以海绵铜(含铜和 Fe、Fe₂O₃)制取硫酸铜的流程如图所示:


下列有关说法不正确的是


- A. 通入的气体 A 可以用 H₂O₂ 代替
- B. "过量酸"可以用稀硫酸
- C. 将从溶液中得到的硫酸铜晶体在蒸发皿中加热,可制得无水硫酸铜
- D. 固体 B 可以用 CuO、Cu(OH)。或 Cu₂(OH)。CO₂
- 9. 南开大学某研究团队利用金属互化物 KSn 为 负极,结合羧酸根官能团化的碳纳米管为正 极 (MWCNTs - COOH), 全面提升了 K-CO₂电池的循环和可逆性,下列叙述错误 的是

化学试题(二) 第3页(共8页)

- A. 充电时 KSn 电极与外接电源的负极相连
- B. 放电时 MWCNTs COOH 的电极反应式为 4K++3CO₂+4e-==2K₂CO₃+C
- C. 充电时 KSn 电极的电极反应式为 K^++Sn+e^- ——KSn
- D. 放电时消耗标准状况下 6.72 L CO₂, KSn 电极生成 35.7 g 单质 Sn
- 10. 往 20 mL 0. 1 mol·L⁻¹的一元酸 HY 溶液中 滴加等浓度一元碱 MOH 溶液,混合溶液的 pH 和温度随加入 MOH 溶液体积变化的曲 线如图所示,下列说法错误的是



C.a.b.c 三点溶液中,水的电离程度:a>b>c

D. 稀释 MY 溶液和 HY 溶液,两溶液中 $c(OH^-)$ 均增大

二、非选择题:本题共5小题,共60分。

11. (13 分)硫酸亚锡(SnSO4)主要用于镀锡、铝合金制品涂层氧化着色、印染工 业用作媒染剂、有机溶液中双氧水去除剂等。某化工厂设计 SnSO4 的制备路 线可简化表示如下:

- $12 \text{Fe}^{3+} + \text{Sn}^{2+} = \text{Sn}^{4+} + 2 \text{Fe}^{2+}$:
- ②强酸性条件下,锡元素在水溶液中有 Sn²⁺、Sn⁴⁺两种主要存在形式;
- ③SnCl₂ 极易水解。
- (1)SnCl₂ 用盐酸溶解而不用水直接溶解的原因是

盐酸酸溶后加入锡粉的主要作用是

化学试题(二) 第4页(共8页)

(2)一般来说,步骤Ⅲ需加热至 75 ℃左右,请分析原因,
该过程发生反应的离子方程式为。
(3)步骤Ⅳ中用到的硅酸盐材料的仪器有。
(4)向 SnO 中加入稀硫酸的作用之一是控制溶液的 pH。若溶液中 $c(\operatorname{Sn}^{2+})$
=1.0 mol·L ⁻¹ ,则室温下应控制溶液 pH 取值范围为(已知
室温下 $K_{sp}[Sn(OH)_2]=1.0\times10^{-26})$ 。
(5)步骤 V 的操作有 a. 过滤 b. 洗涤 c. 蒸发浓缩 d. 冷却结晶 e. 干燥,则其正
确的操作顺序为。
2. (14分)随着生命科学技术和生命科学学科的发展。碳水化合物在日常生活
和科研中的重要性日益凸显。蔗糖八乙酸酯(C28 H38 O19)是一种重要的食品
添加剂,其相对分子质量为678,不溶于水,易
溶于乙醇。
其合成装置如图所示。
实验步骤:
I.制备:量取 26.00 mL(0.275 mol)乙酸酐
和1.6 mL无水吡啶加入三口烧瓶中缓慢加热 电加热套
并搅拌。称取 8. 560 g(0. 025 mol)蔗糖并研
磨粉碎,分批次加入三口烧瓶中,将反应体系缓慢升温至130~135℃,保温反应2h。
Ⅱ. 分离、纯化:采用减压蒸馏的方法除去副产物乙酸及过量的乙酸酐。然后
将产物趁热倒入温水中,再加热至沸腾,稍冷后加入活性炭,趁热过滤。将滤
液静置、冷却至室温,有白色晶体析出。减压过滤,用乙醇一水多次洗涤至滤
液呈中性,得到白色针状的蔗糖八乙酸酯粗品。将粗产品经过多次重结晶,得
到产品 15.255 g。
回答下列问题:
(1)仪器 c 的名称是(填"a"或
"b")口流出。温度计应选用(填序号)。
A. 酒精温度计(量程为−117~78 °C)
B. 煤油温度计(量程为-30~150 °C)
C. 碳纳米温度计(量程为 18~490 °C)
化学试题(二) 第5页(共8页)

(2)减压蒸馏时,减压泵_	上的软管	应连接装	置中的		(填"a""l	o""d"		
"e")口。实验过程中发现	见当温度	大于 136°	C时,因蔗	糖焦化严	重而导致	(后期		
产物的分离提纯变得困难	准。反应:	过程中需	加入活性	炭除去蔗	糖焦化产	生的		
有色物质,活性炭的除杂	有色物质,活性炭的除杂原理为。							
(3)吡啶是一种有机碱,和					应中作催	化剂。		
吡啶也可被其他酸性催化	化剂代替,	,但缺点为				o		
(4)在蔗糖八乙酸酯粗品	重结晶的	」操作中,」	立选用的沟	容剂为				
A. 水 B. 乙醇的水溶	液 C.	用乙醇-	水多次洗	涤后所得	呈中性的	滤液		
(5)本实验中蔗糖八乙酸	酯的产率	医为	<u>%</u> ;	查阅文献	知相同实	:验条		
件下蔗糖八乙酸酯的产	率为 96%	,本实验中	中产率偏低	氏的可能原	原因是			
		任写一条	, (
3.(13分)已知丙烯(CH2=	=СНСН3	。)、环丙烷	E (CH ₂)	的燃烧热	分别		
			H_2C	$-CH_2$				
为—1 922. 2 kJ • mol ⁻¹	·-2 077	7.5 kJ • r	nol^{-1} . C	$H_2 = CH$	CH ₃ 可表	示为		
, CH_2 $\overline{\Pi}_2$	「表示为 <u>/</u>	$^{\wedge}$;环丙烷	完和丙烯 有	可如下转化	と关系 :			
H_2C CH_2								
\triangle (g) \rightleftharpoons \wedge (g) \triangle	ΔH							
回答下列问题:								
(1) <u>(g)</u> 转化为 <u>(</u> ((g)的焓变	ξ ΔΗ=	kJ	• mol^{-1} \circ				
$(2)T$ \mathbb{C} 时,向 1 L 恒容的容器中充人 10 mol 环丙烷,反应过程中环丙烷的物质的								
量随时间的变化关系如下表所示:								
反应时间/min	0	20	40	60	90			
环丙烷的物质的量/mol		7.5	40 5. 5	3. 7	80 2. 2	1.5		
小的规则则里/mol	10	1.0	ə . ə	5. /	۷. ۷	1.5		

反应时间/min	0	20	40	60	80	∞
环丙烷的物质的量/mol	10	7.5	5. 5	3.7	2. 2	1.5

①若起始时总压为 p_0 kPa,反应速率用单位时间内分压的变化表示,而某组 分平衡分压=总压×该组分的物质的量分数,则 40 min 内△(g)的反应速 率 v(△, g) = ____kPa • min⁻¹;该反应的平衡常数 K_p=____ _(用平衡分压代替平衡浓度来计算,保留两位有效数字)。 ②若反应开始时只加入丙烯,且物质的量也为 10 mol,则平衡时,丙烯的转化

化学试题(二) 第6页(共8页)

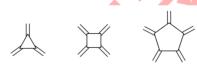
	率为;增大 个 的起始浓度,达平衡后 个 的转化率将	
	(填"增大""减小"或"不变")。	
	(3)一定条件下,通过 CO ₂ 的催	
	化加氢也可制得丙烯,某科研团 CO ₂ (g)	
	队设计了如图工艺并成功制取 H2(g) 反应炉 冷凝塔 分离塔 两烯	i
	了丙烯。 H ₂ O	
	①反应炉中 CO ₂ 催化加氢制取	
	丙烯的化学方程式可表示为	
	0	
	② T \mathbb{C} , 当 $\mathrm{CO_2}$ 和 $\mathrm{H_2}$ 分别以 2 mol • s^{-1} 、 5 mol • s^{-1} 的流速进入反应炉中进	
	行反应,为了降低反应炉出口处 CO ₂ 的流速,可采取的有效措施有	
	0	
14.	$(10 分)Cu(In_{1-x}Ga_xSe_2)$ (简称 CIGS)可作多晶膜太阳能电池材料,具有非常好的	
	发展前景。	4
	回答下列问题:	
	(1)已知 Ga 的原子序数为 31, Ga 和 Se 的第一电离能从大到小顺序为	
	。	
	(2)氧、硫与硒位于同主族,它们的最简单的氢化物中, H_2O 的沸点高于 H_2S	
	和 H ₂ Se,其主要原因是	
	(3)向硫酸铜溶液中加入氨水,先形成蓝色沉淀,继续加入氨水,得到蓝色透	
	明溶液,再加入乙醇析出 $[Cu(NH_3)_4]SO_4$ · H_2O 深蓝色晶体,写出由蓝色沉	
	淀生成蓝色透明溶液的离子方程式。	
	(4)二水合草酸镓的结构如图 1 所示,其中镓原子的配位数为,草酸	
	根离子 $(C_2O_4^{2-})$ 中碳原子的杂化轨道类型为。	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

化学试题(二) 第7页(共8页)

(5) 砷化镓的立方晶胞结构如图 2 所示,晶胞参数为 a=0.565 nm,砷化镓晶体的密度为 ${\rm cm}^{-3}$ (设 $N_{\rm A}$ 为阿伏加德罗常数的值,列出计算式即可)。 COOC₂H₅)的合成路线如下: 15. (10 分)有机化合物 TM(HNO_3 —СООН OC_2H_5 $COOC_2H_5$ 已知: ①A 中只有一类氢原子。 回答下列问题: (1)有机化合物 TM 的分子式为 (写名称)。 (2)有机化合物 TM 中的官能团是 (3)A到B的反应类型是。B到C的试剂和反应条件是 (4)写出①的化学方程式 (5)C的同分异构体中能发生银镜反应,且其中一种具有手性碳原子(碳原子

上连接四个不同的原子或原子团的碳原子称为手性碳原子)的结构简式:

2022 年高考密破考情卷(三)

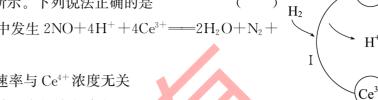

化学

本试卷共8页,满分100分,考试用时75分钟。 注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写 在本试卷上无效。
 - 3. 考试结束后,将本试题卷和答题卡一并交回。

可能用到的相对原子质量: H 1 C 12 N 14 O 16 Na 23 Cl 35.5 Ta 181

- 一、选择题:本题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。
- 1. 卤豆腐、明溪肉脯干、古田银耳、兴化米粉等都是福建特产。下列说法不正确的是 A. 豆浆加石膏制成豆腐,豆浆能产生丁达尔效应
 - B. 明溪肉脯干可提供人体需要的蛋白质、脂肪等营养素
 - C. 为了使银耳增白,用硫黄点燃后同银耳一块放在锅内
 - D. 取一小段兴化米粉,置于蒸发皿中,滴入碘水,米粉变蓝
- 2. 轴烯(Radialene)是独特的环状烯烃,环上每个碳 原子都接有一个双键,含n元环的轴烯可以表示 为[n]轴烯,如图是三种简单的轴烯。下列有关说 法正确的是

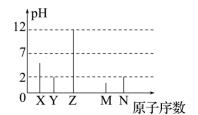

[3]轴烯(a) [4]轴烯(b) [5]轴烯(c)

- A. 轴烯的通式可表示为 C, H,
- B. a 分子中所有原子都在同一个平面上
- C. b 与苯互为同系物
- D. c 能使酸性 KMnO₄ 溶液褪色,发生加成反应
- 3. 设 N_A 为阿伏加德罗常数的值。下列有关叙述正确的是
- A. 0. 1 mol NH₄Cl 固体中 NH₄ 数目小于 0. 1N_A
- B. 1 L 0. 1 mol·L⁻¹CH₃OH 溶液中含有的 H—O 键的数目多于 0. 1N_A
- C. 在反应 KClO₄+8HCl ==KCl+4Cl₂↑ +4H₂O 中,每生成 4 mol Cl₂ 转移的电子 数为 5N_A
- D. 常温下,pH=1 的硫酸溶液中 H⁺数目为 $0.1N_A$

4. 汽车尾气中含有大量的氮氧化物,将 NO 转化为 N₂的

流程如图所示。下列说法正确的是

A. 过程 || 中发生 2NO+4H++4Ce³⁺==2H₂O+N₂+ $4Ce^{4+}$


- B. 反应的谏率与 Ce4+浓度无关
- C. Ce4+可使反应的焓变减小
- D. 该过程中,不涉及非极性键的断裂与生成
- 5. 下表中根据实验操作和现象所得出的结论正确的是

选项	实验操作	实验现象	结论
A	向某溶液中滴加少量酚酞	溶液变红	该溶液一定是碱溶液
В	向某溶液中滴加少量盐酸	产生白色沉淀	原溶液中一定含有 Ag ⁺
C	将某气体通入品红溶液中	溶液褪色	该气体一定是 SO ₂
D	向饱和 AgCl 溶液中加入 NaCl 固体	产生白色沉淀	AgCl 溶液中存在沉淀溶解平衡

6. 硼氢化钠(NaBH4)是极强的还原剂,可用作造纸工业含汞污水的处理剂。如图是制 备 NaBH4 流程图。下列说法不正确的是

$$SiO_2(s)$$
 $V_{Na(s)}$ $V_{Na(s)}$ $V_{Na(s)}$ $V_{Na(s)}$ $V_{Na_2}B_4O_7(s)$ $V_{Na_2}B_4O_7(s)$ $V_{Na_2}B_4O_7(s)$ $V_{Na_2}B_4O_7(s)$ $V_{Na_2}B_4O_7(s)$ $V_{Na_2}B_4O_7(s)$

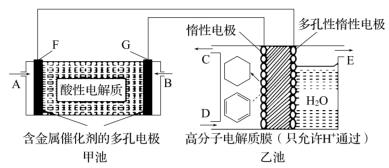
- A. NaBH₄与水反应的方程式是 NaBH₄+2H₂O === NaBO₂+4H₂ ↑
- B. 为增大第一步的反应速率,可将 SiO。粉碎
- C. 反应总方程式为 Na₂B₄O₇+7Na+8H₂+3SiO₂ ===4NaBH₄+3Na₂SiO₃
- D. 由图可知该工艺过程中必须在熔体无水条件下进行
- 7. 已知 X、Y、Z、M、N 均为短周期主族元素。25 ℃时,各 元素最高价氧化物对应水化物的溶液(浓度均为 0.01 $mol \cdot L^{-1}$)的 pH 和原子序数的关系如图所示。下列说 法正确的是

 N_2

 H_2O

- A. 原子半径大小顺序: Z>Y>X
- B. 五种元素的氢化物均为共价化合物
- C. 最高价氧化物对应的水化物的酸性:M>N
- D. Z 的常见氧化物中阴、阳离子个数比均为1:2

化学试题(三) 第2页(共8页)

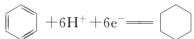

進 证

姓名

考 场

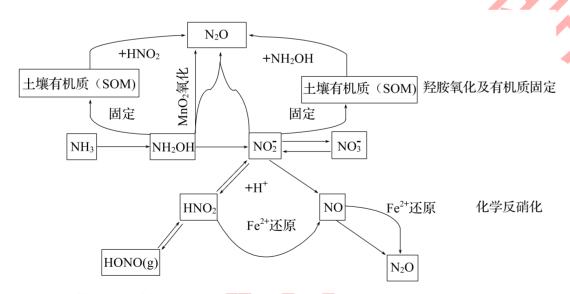
化学试题(三) 第1页(共8页)

8. 燃料电池对新能源的发展有划时代的意义。甲池是一种氢氧燃料电池,乙池是高分子膜电解池(苯、环己烷均为气态)。已知 D 中进入 10 mol 混合气体(其中苯物质的量分数为 <math>20%,杂质不参与反应),C 中出来含苯的物质的量分数为 10%的混合气体(不含 H_2)。



下列说法不正确的是

A. 甲池中 F 极为正极

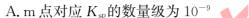

B. 乙池中流经水溶液共传导 6 mol 电子

C. 乙池中苯发生的电极反应:

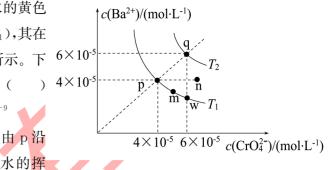
D. 甲池中 G 极发生: 2H₂-4e--4H+

9. N₂O 性质稳定,可以长时间存在于大气中,同时它还是氮氧化物之一,间接影响臭氧的消耗,非生物学途径产生 N₂O 的过程如图所示。下列说法正确的是

A. NH₃ 转化为羟胺被还原


B. NO 生成 N₂O 的反应: 2NO+2Fe²⁺+H₂O ===2Fe³⁺+N₂O+2OH⁻

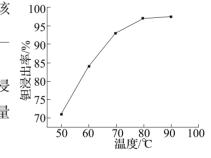
 $C. NH_2OH 与 NO_2$ 反应的物质的量之比为 1:1


D. 化学反硝化的因素不受 pH、温度等的影响

化学试题(三) 第3页(共8页)

10. 铬酸钡($BaCrO_4$)是一种难溶于水的黄色 颜料,在 T_1 和 T_2 温度下(T_2 > T_1),其在 水中的沉淀溶解平衡曲线如图所示。下 6×10^{-10} 列说法错误的是 () 4×10^{-10}

B. 温度升高时, p 点的溶液组成由 p 沿 pq 线向 q 方向移动(不考虑水的挥 发)


C. T₁ 温度下,n 点有 BaCrO₄ 沉淀析出

D.向p点的溶液中加入少量 K.CrO. 固体,溶液组成由p沿pmw线向w方向移动

- 二、非选择题:本题共5小题,共60分。
- 11. (13 分)五氧化二钽(Ta₂O₅)主要用作拉钽酸锂单晶和制造高折射低色散特种光学玻璃,化工中可作催化剂。一种从钽废料中制备五氧化二钽的工艺流程如图,回答下列问题。

- 已知:①钽废料主要成分为 NaTaO3、FeO、Fe2O3、Al2O3、SiO2
- ②H₂TaF₇ 是弱酸
- (1)钽废料粉碎的目的是
- (2)加入 H₂O₂ 氧化时,发生反应的离子方程式为
- (3)NaOH 调节 pH,过滤后滤渣 2 主要成分为
- (4)加入 HF 酸浸后,是将 TaO₃ 转化为 H₂TaF₇,该 100₇ 反应的离子方程式是 95

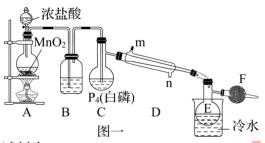
加入 $4 \text{ g} \cdot \text{L}^{-1}$ HF 溶液后,浸出时间为 4 h, Ta 的浸 $\frac{\text{N}}{\text{P}}$ 80 H $\frac{\text{N}}{75}$ 出率随温度的关系如图所示,则 HF 溶液的物质的量 $\frac{\text{N}}{70}$ 浓度为

(5)通人 NH3 后,发生反应的离子方程式为

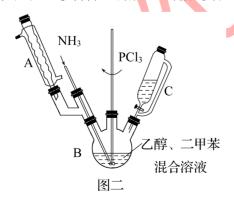
(6)本流程中使用钽废料 100 t,若得到纯净干燥的五氧化二钽 78.0 t,假设钽废料中的钽元素有 85%转化为五氧化二钽,则钽废料中钽元素的质量分数为。

12. (14 分)亚磷酸三乙酯[P(OC₂H₅)₃]的结构为

CH₃—CH₂—O—P—O—CH₂—CH₃,可用作增塑剂、润滑油添加剂及稳定剂,以 | O—CH₂—CH₃


及农药杀虫剂的中间体,医药镇痛剂苯噻啶的原料等。某化学兴趣小组设计实验制备亚磷酸三乙酯。

已知:①白磷的熔点为 44.1 ℃。②部分物质性质如下:


物质	亚磷酸三乙酯	亚磷酸二乙酯	二甲苯	三氯化磷
颜色 状态	无色液体	无色液体	无色液体	无色液体
溶解性	不溶于水,易溶于乙醇、二 甲苯,在水中易逐渐水解成 亚磷酸二乙酯,在酸性介质 中水解加快	易溶于乙醇,遇水 迅速水解,生成亚 磷酸和乙醇	与乙醇混溶, 不溶于水	溶于乙醇,遇水立刻水解
沸点	156.6 ℃	187∼188 ℃	137∼140 ℃	76.1 ℃

回答下列问题:

(1)甲同学利用下列装置制备 PCl₃:

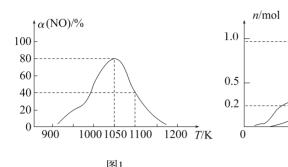
- ①装置 B 中盛放的试剂为
- ②装置C中主要发生反应的化学方程式为
- ③干燥管 F 中盛放碱石灰的作用为
- (2)乙同学利用甲组制得的 PCl。制备亚磷酸三乙酯。实验装置及主要实验步骤如下

化学试题(三) 第5页(共8页)

- I.取一定量的乙醇(过量)与适量的二甲苯配成溶液加入三颈烧瓶中,再加入甲基红指示剂,PCl。加入滴液漏斗中。
- Ⅱ. 在强烈搅拌下,边通氨气边滴入 PCl_3 ,保持反应温度在 $0\sim10$ $^{\circ}$ C,约 $^{\circ}$ 2 h, PCl_3 滴加完毕,继续通氨气数分钟,使反应物呈碱性。已知反应过程中有少量亚磷酸二乙酯 $[(C_2H_5O)_2POH]$ 生成,亚磷酸二乙酯的结构为

Ⅲ.加水溶解、分离弃去水层。

Ⅳ. 将油层减压蒸馏。


- ①图一仪器 D和图二仪器 A能不能交换使用 (填"能"或"不能")。
- ②步骤Ⅱ中生成亚磷酸三乙酯的化学方程式为
- ③步骤Ⅲ加水溶解可除去的杂质是
- ④步骤Ⅳ"减压蒸馏"除得到产品外,另一目的是
- 13. (13分)氮污染指由氮的化合物引起的环境污染。回答下列问题:

(1)氢气在富氧条件下催化还原 NO_x,反应在低温时仍具有高活性和选择性。已知催化剂 Rh 表面 H₂ 催化还原 NO 的反应机理如表。

序	基元反应	活化能 Ea/	序	基元反应	活化能 Ea/
号	▼	$(kJ \cdot mol^{-1})$	号	<u> </u>	$(kJ \cdot mol^{-1})$
1	$H_2(g)+Rh(s)+Rh(s)$ $H(s)+H(s)$	12.6	6	$H_2O(s) = H_2O(g) + Rh(s)$	45.0
2	$NO(g) + Rh(s) \longrightarrow NO(s)$	0.0	7	$N(s)+N(s)=$ $N_2(s)+Rh(s)+Rh(s)$	120.9
3	NO(s) + Rh(s) = O(s) + N(s)	97.5	8	OH(s) + Rh(s) = H(s) + O(s)	37.7
4	H(s)+O(s) = OH(s)+Rh(s)	83.7	9	$H(s)+H(s)=$ $H_2(g)+Rh(s)+Rh(s)$	77.8
(5)	$H(s)+OH(s) = H_{\delta}O(s)+Rh(s)$	33. 5	10	NO(s) = NO(g) + Rh(s)	108.9

其他条件一定时,决定 H_2 催化还原 NO 的反应速率的基元反应为______(填序号),基元反应 H(s)+O(s)——OH(s)+Rh(s)的 $\Delta H=$ ______k $J \cdot mol^{-1}$ 。

(2)用活性炭处理汽车尾气中 NO 的方法: $C(s)+2NO(g) \longrightarrow N_2(g)+CO_2(g)$ ΔH <0。在恒压密闭容器中加入足量的活性炭和一定量的 NO 气体,反应相同时间时, 测得 NO 的转化率 α (NO)随温度的变化关系如图 1 所示。温度低于1 050 K时, α (NO)随温度升高而增大,原因是

(3)NH $_3$ (g)的催化氧化是工业制备硝酸的重要反应。已知氨催化氧化时会发生如下两个竞争反应:

520

840

I: $4NH_3(g)+5O_2(g) \Longrightarrow 4NO(g)+6H_2O(g)$ $\Delta H = -905.0 \text{ kJ} \cdot \text{mol}^{-1}$ II: $4NH_3(g)+3O_2(g) \Longrightarrow 2N_2(g)+6H_2O(g)$ $\Delta H = -1 \ 266.6 \text{ kJ} \cdot \text{mol}^{-1}$

为分析某催化剂对该反应的选择性,在 1 L 密闭容器中充入 $1 mol NH_3$ 和 $2 mol O_2$,测得有关物质的物质的量与温度的关系如图 2 所示。

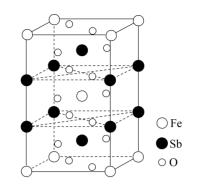
- ①该催化剂在低温时选择反应 (填"Ⅰ"或"Ⅱ")。
- ②520 \mathbb{C} 时, $4NH_3(g)+3O_2(g)$ \Longrightarrow $2N_2(g)+6H_2O(g)$ 的平衡常数 K= _____(不要求得出计算结果,只需列出数字计算式)。
- (4)已知 25 °C时,NH₃ H₂O 的 $K_b = 1.8 \times 10^{-5}$, H₂CO₃ 的 $K_{a1} = 4.4 \times 10^{-7}$, $K_{a2} =$

 4.7×10^{-11} 。向氨水中通人 CO_2 ,当溶液的 pH=10 时, $\frac{c(HCO_3^-)}{c(CO_3^{2-})} =$ _______,当溶

液呈中性时, $\frac{c(NH_4^+)}{c(H_2CO_3)} =$ _____。

- 14. (10 分)过渡金属元素镍、锑、铁、钛、钒在现代农业、科技和国防建设中有着许多独特的用途。回答下列问题:
 - (1)基态 Fe 原子的价层电子排布式为

NH₄H₂PO₄中,除氢元素外,其余三种元素电负性的大小关系 H


是_____(用">"表示)。

(2)已知离子核外没有未成对 d 电子的过渡金属离子形成的水 C——C、 合离子是无色的, Ti^{4+} 、 V^{3+} 、 Ni^{2+} 三种离子的水合离子无颜色 H_3C

的是_____(填离子符号);在浓的 $TiCl_3$ 的盐酸溶液中加入乙醚,并通入 HCl 至饱和,可得到配位数为 6、组成为 $TiCl_3$ • $6H_2O$ 的绿色晶体,该晶体中两种配体的物质的量之比为 1:5,则该配离子的化学式为

(3)一种 Ni²⁺配合物的结构如图所示,该配合物中的配位数为

(4)锑酸亚铁晶胞如图所示:

锑酸亚铁的化学式为

15. (10 分)普罗帕酮为广谱高效膜抑制性抗心律失常药,具有膜稳定作用及竞争性 β 受体阻滞作用。普罗帕酮的合成路线如下:

$$C_6H_6O$$
 $CH_3CO)_2O$ $CCCCH_3$ $AlCl_3$ III $CCCCH_3$ III III

$$CH_3$$
 (普罗帕酮)
$$CH_3$$
 (普罗帕酮)
$$CH_3$$

$$OHH$$

$$H$$

$$CH_2-CHO+R-CHCHO \xrightarrow{NaOH/H_2O} RCH_2CH-C-CHO$$

回答下列问题:

- (1) A 遇 FeCl₃ 溶液显紫色, A 中含有的官能团名称为
- (2) D→E 的反应类型为 ,1 mol 普罗帕酮最多消耗 mol H₂。
- (3)D的结构简式为
- (4)E→F 的化学方程式为
- (5)C的同分异构体中遇 FeCl₃ 溶液显紫色、能发生银镜反应且核磁共振氢谱中有 5种峰、峰面积比为 2:2:2:1:1的结构简式为

化学试题(三) 第8页(共8页)